Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (/spl Lambda///sup ~/sub _//141/spl mu/m) - Electronics Letters
نویسندگان
چکیده
The development of quantum-cascade lasers (QCLs) at 2.1 THz (l’ 141 mm), which is the longest wavelength QCL to date without the assistance of magnetic fields, is reported. This laser uses a structure based on resonant-phonon depopulation, and a metal–metal waveguide to obtain high modal confinement with low waveguide losses. Lasing was observed up to a heatsink temperature of 72 K in pulsed mode and 40 K in continuous-wave (CW) mode, and 1.2 mW of power was obtained in CW mode at 17 K.
منابع مشابه
Temperature Effect on THz Quantum Cascade Lasers
A simple semi-phenomenological model, which accurately predicts the dependence of thresholdcurrent for temperature of Resonant-phonon three well quantum cascade laser based on verticaltransitions is offered. We found that, the longitude optical phonon scattering of thermally excitedelectrons is the most important limiting factor for thermal performance of high frequency THz QCLs.In low frequenc...
متن کاملTerahertz quantum cascade lasers based on resonant phonon scattering for depopulation.
We report our development of terahertz (THz) quantum cascade lasers (QCLs), in which the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO) phonon scattering. This depopulation mechanism, similar to that implemented in all the QCLs operating at mid-infrared frequencies, is robust at high temperatures and high injection levels. The unique feature of ...
متن کاملMagnetic-field-assisted terahertz quantum cascade laser operating up to 225 K
Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2–5 THz, although cryogenic cooling is still required2,3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz qua...
متن کاملGround state terahertz quantum cascade lasers
A terahertz quantum cascade laser (THz QCL) architecture is presented in which only the ground state subbands of each quantum well are involved in the transport and lasing transition. Compared to state-of-the art THz QCLs based on the resonant-phonon scheme, ground state QCLs employ narrower wells so that all high-energy subbands are pushed up far above the occupied subband levels, significantl...
متن کاملMicroelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber.
This Letter describes the fabrication of a microelectromechanical systems (MEMS) bimaterial terahertz (THz) sensor operating at 3.8 THz. The incident THz radiation is absorbed by a metamaterial structure integrated with the bimaterial. The absorber was designed with a resonant frequency matching the quantum cascade laser illumination source while simultaneously providing structural support, des...
متن کامل